# HYDROGEN SULFIDE EMISSION BY CUCUMBER LEAVES IN RESPONSE TO SULFATE IN LIGHT AND DARK

JIRO SEKIYA\*, AHLERT SCHMIDT†, HEINZ RENNENBERG, LLOYD G. WILSON and PHILIP FILNER‡ MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, U.S.A.

(Received 5 June 1981)

Key Word Index—Cucumis sativus; Cucurbitaceae; cucumber; sulfur compounds; hydrogen sulfide; biosynthesis; photosynthesis; sulfate reduction.

Abstract—Young leaf discs of cucumber (Cucumis sativus) emit H<sub>2</sub>S at 50-100 pmol/min/cm<sup>2</sup> in response to 25 mM K<sub>2</sub>SO<sub>4</sub> and light. The light-dependent H<sub>2</sub>S emission was inhibited by cyanazine, atrazine and DCMU, each of which also inhibits CO<sub>2</sub> fixation. However, H<sub>2</sub>S emission was markedly more sensitive to DCMU, and exhibited small differences in sensitivity to the triazines, compared to CO<sub>2</sub> fixation. Incorporation of <sup>35</sup>S from SO<sub>4</sub><sup>2-</sup> into organic sulfur (S) compounds such as cysteine, methionine, glutathione and proteins occurred in darkness, but at a rate 40% less than in light. In the light 0.1 mM cyanazine inhibited incorporation of 35S from SO<sub>4</sub><sup>2-</sup> into organic S compounds also by 40%. This was much less than the inhibition of H<sub>2</sub>S emission and CO<sub>2</sub> fixation rates caused by the same treatments. These results indicate that the path of  $SO_4^{2-}$  assimilation leading to emitted  $H_2S$  is heavily dependent on photosynthetic electron transport but in a manner which differs significantly from the dependence of CO<sub>2</sub> fixation. Furthermore, the path of assimilation of SO<sub>4</sub><sup>2-</sup> into organic S compounds functions quite well in darkness; i.e. without simultaneous production of reductants by light reactions. Dithioerythritol (10 mM), which does not cause  $H_2S$  emission by itself, greatly stimulated  $H_2S$  emission in dark or light in response to 25 mM  $K_2SO_4$ . However, assimilation of  $SO_4^{2-}$  into organic S compounds was inhibited by DTE. These results indicate that DTE provides access to an alternative reducing pathway leading to H<sub>2</sub>S which can function in light or darkness. DTE may cause H<sub>2</sub>S production from SO<sub>4</sub><sup>2-</sup> by diverting sulfur from the normal pathway of carrier-bound intermediates, forming a free sulfite pool instead, which could give rise to H<sub>2</sub>S by the action of sulfite reductase.

## INTRODUCTION

Sulfate (SO<sub>4</sub><sup>2-</sup>) is the most common oxidized form of sulfur in nature. It meets the sulfur requirements of higher plants, algae and other micro-organisms which are capable of reducing SO<sub>4</sub><sup>2</sup> and incorporating it into reduced organic sulfur (S) compounds such as Lcysteine, L-methionine and glutathione. This pathway, known as the assimilatory SO<sub>4</sub><sup>2-</sup> reduction pathway [1,2] is stimulated by light and is localized in chloroplasts [3-5]. Furthermore, ferredoxin can serve as reductant in the reaction catalysed by thiosulfonate reductase the key reductive step in the assimilatory sulfate pathway which employs carrierbound sulfur intermediates [1]. Therefore, it is highly probable that the reductants for light-dependent assimilatory SO<sub>4</sub><sup>2-</sup> reduction in leaves are generated photosynthetically.

When leaves or roots were exposed to relatively high concentrations of SO<sub>4</sub><sup>2</sup>, hydrogen sulfide (H<sub>2</sub>S)

emission from the leaves was observed in response to light at rates comparable to rates of sulfate assimilation into leaf protein [6, 7]. The path of synthesis of the emitted H<sub>2</sub>S has not yet been determined. The most likely candidates for the immediate precursor of H<sub>2</sub>S formed by light-dependent reduction of sulfate are carrier-bound or free sulfide formed from carrierbound or free sulfite, respectively. If free sulfide is the natural precursor of L-cysteine in leaves as it appears to be in some micro-organisms, free sulfide, hence H<sub>2</sub>S, would be a normal intermediate of sulfate assimilation. However, there is evidence that carrierbound sulfide is the immediate precursor in green algae and higher plants [1] and H<sub>2</sub>S might arise as a result of decomposition of the carrier-sulfide conjugate. Still a third possible origin of H<sub>2</sub>S is desulfhydration of L-cysteine, a reaction which Harrington and Smith [8] encountered in cultured plant cells. We have recently shown it to occur in leaves [9]. L-Cysteine is also desulfhydrated during synthesis of B-cyanoalanine from L-cysteine and cyanide, in a reaction catalysed by  $\beta$ -cyanoalanine synthase, an enzyme which has been encountered widely in plants

In this report, we present some findings on the light dependence of H<sub>2</sub>S emission in young cucumber leaf discs in response to sulfate, compared to the light

<sup>\*</sup>Present address: Department of Agricultural Chemistry, Yamaguchi University, Yamaguchi 753, Japan.

<sup>†</sup>Present address: Botanisches Institut der Universität Diaeresis München, Menzinger Strasse 67, D-8000 München, West Germany.

<sup>‡</sup>To whom correspondence should be addressed.

J. Sekiya et al.

dependence of synthesis of organic S compounds, and to the light dependence of  $CO_2$  fixation. The results point to the existence of two routes from sulfate to  $H_2S$ .

#### RESULTS

Light-dependency of  $H_2S$  emission in response to  $SO_4^{2-}$ 

Young cucumber leaf discs exposed to  $25 \, \text{mM}$   $K_2 \text{SO}_4$  emitted  $H_2 \text{S}$  and other sulfur volatiles (Fig. 1) in the same light-dependent manner as leaves on intact plants which had been exposed to sulfate through the roots or detached leaves which had been exposed to sulfate through the cut petiole [11]. The maximal rates of emission of  $H_2 \text{S}$  were 50–100 pmol/min/cm<sup>2</sup>.

The air which passed by the discs thereby acquired the odor of H<sub>2</sub>S and this was confirmed by GC analysis using an S detector and by the fact that the volatile sulfur could be trapped by a zinc acetate solution, which is characteristic of H<sub>2</sub>S. The trapped material formed methylene blue when reacted with dimethyl-p-phenylenediamine (DMD), a reaction

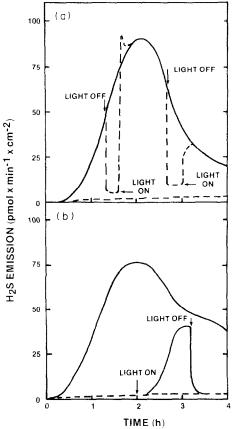



Fig. 1. Light dependence of H<sub>2</sub>S emission by discs from young cucumber leaves in response to 25 mM K<sub>2</sub>SO<sub>4</sub>. Three groups of eight discs (18 cm<sup>2</sup> leaf area) were obtained from a single leaf and each group of discs was floated on 10 ml K<sub>2</sub>SO<sub>4</sub> (pH 6) in a 125 ml Erlenmeyer flask coupled to a sulfur analyser through an automatic channel selector. One group of discs was kept in darkness; one group was kept in light (8 mW/cm<sup>2</sup>) continuously; the third group was illuminated, but the illumination was interrupted for brief periods of darkness.

specific for sulfide [12]. The amount of  $H_2S$  trapped by zinc acetate and determined chemically with DMD accounted on average for 88% of the amount of volatile sulfur detected by the GC sulfur detector. When known amounts of  $H_2S$  were analysed by both methods, the methylene blue method gave values equal to 95–98% of the sulfur analyser values. Therefore, it became evident that the volatile sulfur emitted in response to  $SO_4^{2-}$  and light was almost entirely  $H_2S$ .

Darkness after illumination caused a quick decrease in H<sub>2</sub>S emission within 1 min (Fig. 1). Reillumination after a brief period of darkness caused a quick increase in H2S emission usually with a transient overshoot for ca 10 min after which the emission rate returned to the rate which would have been achieved in continuous light. This was rigorously established by monitoring the emission rates from duplicate samples of leaf discs from the same leaf one of which was kept in continuous light and the other placed in darkness for a short interval and observing the superposition of the emission rate curves (Fig. 1). A transient undershoot occurs when the irradiance is reduced to an intermediate level (data not shown). Both overshoots and undershoots also occur when attached or detached cucumber leaves are used. The occurrence of these transient variations in rate in cut discs and the rapidity of their occurrence indicate that they probably do not reflect changes in  $SO_4^{2-}$  translocation in the vascular system.

It is noteworthy that the rate of emission of  $H_2S$  is greater by discs exposed to  $SO_4^2$  for the same times but which had been illuminated then subjected to darkness (Fig. 1). This result indicates that illumination makes possible a change in the leak (perhaps accumulation of a precursor or reductant) which enhances  $H_2S$  emission in darkness. Sulfate has to be present for the change to occur since the leaves were illuminated prior to the start of the sulfate treatments.

The effects of inhibitors of photosynthetic electron transport on light-dependent  $H_2S$  emission were compared with their effects on  $CO_2$  fixation (Fig. 2). 3(3',4'-Dichlorophenol) - 1,1 - dimethylurea (DCMU), atrazine and cyanazine, which inhibit between photosystem II and plastoquinone, each caused inhibition of light-dependent  $H_2S$  emission, but the dose-response curves differed from those for  $CP_2$  fixation in each case. Hydrogen sulfide emission was far more sensitive to DCMU than was  $CO_2$  fixation (Fig. 2a). Only 5  $\mu$ M DCMU was required for 50% inhibition of  $H_2S$  emission, while 45  $\mu$ M DCMU was required for 50% inhibition of  $CO_2$  fixation.

The dose-response curves with cyanazine as the inhibitor are qualitatively similar for H<sub>2</sub>S emission and CO<sub>2</sub> fixation, but H<sub>2</sub>S emission was consistently more strongly inhibited, in terms of per cent of total activity which was inhibited (Fig. 2b). However, neither CO<sub>2</sub> fixation nor H<sub>2</sub>S emission was totally inhibited even at high concentrations of cyanazine. If one subtracts the components of CO<sub>2</sub> fixation and H<sub>2</sub>S emission which were not inhibited by cyanazine, the differences in sensitivity disappear.

In the case of inhibition by atrazine,  $CO_2$  fixation was slightly more sensitive than  $H_2S$  emission at low doses, but at higher doses, the two processes had essentially identical sensitivities (Fig. 2c).

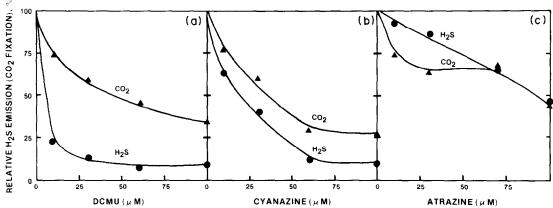



Fig. 2. Effects of inhibitors of photosynthetic electron transport on H<sub>2</sub>S emission and CO<sub>2</sub> fixation by discs from young cucumber leaves exposed to 25 mM K<sub>2</sub>SO<sub>4</sub>. For each inhibitor concentration tested, two groups of eight discs (18 cm<sup>2</sup> of leaf area) from one half of an expanding leaf were placed in a pair of matched leaf chambers and the CO<sub>2</sub> fixation and H<sub>2</sub>S emission monitored intermittently for 4 hr under continuous illumination (4 mW/cm<sup>2</sup>). One group of leaf discs was floated on 10 ml 25 mM K<sub>2</sub>SO<sub>4</sub> containing one of the inhibitor concentrations indicated. The other group of leaf discs was floated on 10 ml 25 mM K<sub>2</sub>SO<sub>4</sub> solution without inhibitors. CO<sub>2</sub> fixation or H<sub>2</sub>S emission without inhibitor was taken as 100%. Within the 30 experiments performed, 100% CO<sub>2</sub> fixation was in the range 0.7-1 μmol CO<sub>2</sub>/hr/cm<sup>2</sup> of leaf, and 100% H<sub>2</sub>S emission was in the range 1.2-3.5 nmol H<sub>2</sub>S/hr/cm<sup>2</sup> of leaf.

In the light, leaf discs took up ca. 8-10 mol of SO<sub>4</sub><sup>2</sup> per g fr. wt from the treatment solution during the first 2 hr (Table 1). The rate of SO<sub>4</sub><sup>2</sup> uptake was 50% lower in darkness, but cyanazine in the light did not inhibit sulfate uptake (Table 1), so addition of cyanazine is not entirely equivalent to turning off the light. Assimilation of SO<sub>4</sub><sup>2</sup> into reduced organic S compounds such as cysteine, methionine, glutathione and proteins was determined by measurement of incorporation of <sup>35</sup>S from <sup>35</sup>SO<sub>4</sub><sup>2</sup> into those compounds. In the light, total <sup>35</sup>S in reduced organic S compounds was 6-10% of <sup>35</sup>S taken up from external 25 mM <sup>35</sup>SO<sub>4</sub><sup>2</sup> (Table 1). The major fates of assimilated <sup>35</sup>S were incorporation into glutathione and cystine (4-6% and 1.5-3% respectively of <sup>35</sup>S taken up). The rate of incorporation into organic S compounds in the dark, as per cent of <sup>35</sup>S taken up, was

about half of that in the light (Table 1). In light, cyanazine inhibited by 40% the incorporation of <sup>35</sup>S from <sup>35</sup>SO<sub>4</sub><sup>-</sup> into organic S compounds. In all cases, 80–90% of <sup>35</sup>S taken up could be recovered from the discs as SO<sub>4</sub><sup>2</sup>.

Stimulation by dithioerythritol (DTE) of  $H_2S$  emission in response to  $SO_4^{2-}$  in light and dark

The enzyme APS sulfotransferase can catalyse the transfer of the sulfo moiety from APS to a suitable carrier thiol such as GSH; or it can catalyse the release of the sulfo moiety as sulfite in the presence of another thiol compound such as DTE in what is probably an abortive sulfo transfer reaction [1]. Therefore DTE might abort the formation of H<sub>2</sub>S in vivo if the synthesis from sulfate proceeded via a bound sulfur pathway. However, leaves also contain

Table 1. Sulfate uptake and assimilation into cysteine and its metabolites by young cucumber leaf discs

|                                          | Light<br>or<br>dark | SO <sub>4</sub> <sup>2</sup> uptake<br>(μ mol/g fr. wt) | S assimilated, as % total <sup>35</sup> S taken up |            |     |         |       |
|------------------------------------------|---------------------|---------------------------------------------------------|----------------------------------------------------|------------|-----|---------|-------|
| Treatment                                |                     |                                                         | Cysteine                                           | Methionine | GSH | Protein | Total |
| Experiment 1                             |                     | · · · · · · · · · · · · · · · · · · ·                   |                                                    |            |     |         |       |
| SO <sub>4</sub> <sup>2</sup> alone       | L                   | 8.39                                                    | 3.2                                                | 0.7        | 6.2 | 0.5     | 10.6  |
| $SO_4^{2-} + DTE$                        | L                   | 6.29                                                    | 2.3                                                | 0.4        | 4.4 | 0.2     | 7.3   |
| SO <sub>4</sub> <sup>2</sup> alone       | D                   | 4.93                                                    | 2.2                                                | 0.3        | 2.4 | 0.6     | 5.5   |
| $SO_4^{2-} + DTE$                        | D                   | 4.36                                                    | 1.5                                                | 0.7        | 1.2 | 0.2     | 3.5   |
| Experiment 2                             |                     |                                                         |                                                    |            |     |         |       |
| SO <sub>4</sub> <sup>2</sup> - alone     | L                   | 8.98                                                    | 1.5                                                | 0.2        | 4.1 | 0.1     | 5.9   |
| SO <sub>4</sub> <sup>2</sup> + cyanazine | D                   | 9.63                                                    | 1.4                                                | 0.3        | 2.2 | 0.1     | 3.9   |

Leaf discs prepared from a single young cucumber leaf were floated on 2 ml 25 mM  $K_2SO_4$  containing 10–15  $\mu$ Ci of  $Na_2^{35}SO_4$  with or without 10 mM DTE or 0.1 mM cyanazine in Petri dishes in the light (8 mW/cm²) or in the dark for 2 hr. <sup>35</sup>S compounds in leaf discs were extracted and fractionated as described in the Experimental, to determine <sup>35</sup>S in each fraction and <sup>35</sup>S in reduced organic S compounds.  $SO_4^{2-}$  uptake was calculated from total <sup>35</sup>S taken up and specific radioactivity of the treatment solution.

2176 J. Sekiya et al.

the enzyme sulfite reductase which catalyses the reduction of sulfite and sulfide so it is conceivable that, even if DTE released sulfite from APS, the final product could still be  $H_2S$ . A third possibility is that DTE might be able to serve as reductant for sulfate in the dark. Still, a fourth possibility is that the thiols of DTE might themselves serve as precursors of  $H_2S$ . These various possibilities prompted us to see if DTE affected  $H_2S$  emission by leaf discs.

DTE stimulated H<sub>2</sub>S emission by illuminated leaf discs which were also exposed to SO<sub>4</sub><sup>2-</sup>, while a negligible amount of H<sub>2</sub>S emission was observed in response to 10 mM DTE alone (Table 2 and Fig. 3). The extent of stimulation increased with the concentration of DTE (Table 2). Remarkably, SO<sub>4</sub><sup>2-</sup> uptake by illuminated leaf discs was inhibited ca. 20% by 10 mM DTE (Table 1). Also, the rate of incorporation of <sup>35</sup>S from <sup>35</sup>SO<sub>4</sub><sup>2-</sup> into organic S compounds in light was inhibited 30% by DTE (Table 1). In this case, ca. 85% of <sup>35</sup>S from <sup>35</sup>SO<sub>4</sub><sup>2-</sup> still remained in the form of SO<sub>4</sub><sup>2-</sup>.

Although exposure to 25 mM SO<sub>4</sub><sup>2-</sup> alone did not elicit significant H<sub>2</sub>S emission in darkness, leaf discs exposed to 25 mM SO<sub>4</sub><sup>2-</sup> in the presence of 10 mM DTE in darkness emitted H<sub>2</sub>S at a low rate, but still well above the almost negligible rate in darkness without DTE. During the first 10 hr, discs exposed to  $SO_4^{2-}$  and DTE emitted in darkness only ca. 10% as much H<sub>2</sub>S as illuminated discs (Fig. 3). Also, the pattern of H<sub>2</sub>S emission in response to SO<sub>4</sub><sup>2-</sup> and DTE in darkness was different from the pattern in light. The emission rate in darkness increased gradually throughout the first 10 hr, while the emission rate in light reached its maximum after 2 hr and then decreased. In the presence of DTE the rates of SO<sub>4</sub><sup>2</sup> uptake and of incorporation of 35S from 35SO<sub>4</sub><sup>2-</sup> into organic S compounds were lower in darkness than in

Table 2. Effect of DTE on H<sub>2</sub>S emission by illuminated young cucumber leaf discs exposed to 25 mM K<sub>2</sub>SO<sub>4</sub> in the light

| Treatment                            | H <sub>2</sub> S emitted, (%) |  |  |
|--------------------------------------|-------------------------------|--|--|
| 25 mM K <sub>2</sub> SO <sub>4</sub> | 100                           |  |  |
| + 1 mM DTE                           | 141                           |  |  |
| +5 mM DTE                            | 192                           |  |  |
| + 10 mM DTE                          | 394                           |  |  |
| 10 mM DTE alone                      | 2                             |  |  |

Each treatment was tested in a separate experiment. In each experiment, two groups of ten leaf discs were punched from each half of a single young cucumber leaf. The discs were floated on 10 ml 25 mM K<sub>2</sub>SO<sub>4</sub> with or without DTE (pH 6) in a pair of matched leaf disc chambers coupled to a sulfur analyser through an automatic channel selector. H<sub>2</sub>S emissions by leaf discs with K<sub>2</sub>SO<sub>4</sub> (control) and leaf discs with K<sub>2</sub>SO<sub>4</sub> and DTE in the light (8 mW/cm<sup>2</sup>) were monitored by a sulfur analyser. For each experiment, H<sub>2</sub>S emitted for 4 hr is presented as a percentage of emission by the control in that experiment.

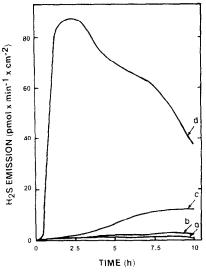



Fig. 3. Effect of DTE on H<sub>2</sub>S emission by young cucumber leaf discs in response to 25 mM K<sub>2</sub>SO<sub>4</sub>. Groups of eight leaf discs prepared as in Fig. 2 were floated on 10 ml 25 mM K<sub>2</sub>SO<sub>4</sub> solution with or without 10 mM DTE in 125 ml Erlenmeyer flasks either in light (8 mW/cm<sup>2</sup>) or in darkness. The flasks were connected to a sulfur analyser, and the H<sub>2</sub>S emission was monitored intermittently by means of an automatic sample selector. (a), 25 mM K<sub>2</sub>SO<sub>4</sub>, dark; (b), 10 mM DTE, light or dark; (c), 25 mM K<sub>2</sub>SO<sub>4</sub> + 10 mM DTE, dark; (d), 25 mM K<sub>2</sub>SO<sub>4</sub> + 10 mM DTE, light.

light. Furthermore, compared to darkness alone, DTE in darkness inhibited  $SO_4^{2-}$  uptake and incorporation of <sup>35</sup>S into organic S compounds. Thus, while DTE stimulated  $H_2S$  emission in response to  $SO_4^{2-}$  in both light and dark,  $SO_4^{2-}$  uptake and incorporation of the sulfur in  $SO_4^{2-}$  into organic S compounds were being inhibited.

## DISCUSSION

Leaf discs emit  $H_2S$  as well as detached whole leaves or intact plants with injured roots [7] but they have the very great advantage that replicate samples of discs from a single leaf behave virtually identically. Individual leaves vary substantially from plant to plant, even when the plants have been raised identically. The reproducibility of the leaf discs' responses makes it possible for the first time to detect subtle responses of the  $H_2S$  emission system of leaves to various treatments.

Photosynthetic electron transport appears to be involved in the light-driven step leading to  $H_2S$  emission in response to  $SO_4^{2-}$ . This conclusion is based on the fact that  $H_2S$  emission in response to  $SO_4^{2-}$  and light was inhibited by cyanazine, atrazine and DCMU when these inhibitors of photosynthetic electron transport were inhibiting  $CO_2$  fixation. However, none of the inhibitors had quantitatively the same effect on  $CO_2$  fixation and  $H_2S$  emission. Quantitatively identical effects would be expected only if certain criteria were met: (a) photosynthetic electron transport was the sole source of reductant for each pathway; (b) the reductant for both pathways was obtained from the same point in photosynthetic elec-

tron transport after the point of inhibition, e.g. reduced ferredoxin or NADPH from the end of photosystem I; (c) the reductant-limited enzymes of  $CO_2$  fixation and  $H_2S$  emission had equal access to the limiting reductant; (d) the reductant-limited enzymes in the respective pathways had the same  $K_m$ s for the reductant.

The  $H_2S$  emitted in response to  $SO_4^{2-}$  is synthesized largely by reduction of  $SO_4^{2-}$  to the sulfide level since ca. 60% of sulfur in the  $H_2S$  emitted is derived from sulfur in the  $SO_4^{2-}$  applied [11]. There are at least two possible pathways of reduction of  $SO_4^{2-}$  to the sulfide level: (a) reduction of carrier- $SO_3^-$  to carrier- $S^-$  in what is believed to be the normal  $SO_4^{2-}$  assimilatory pathway, or (b) reduction of free  $SO_3^{2-}$  to free sulfide [1,2]. Reduction of  $SO_4^{2-}$  and incorporation of the reduced sulfur into cysteine in leaf tissues or isolated chloroplasts are highly stimulated by illumination [14]. Reduction in vitro of carrier- $SO_3^-$  and of free  $SO_3^{2-}$  to the sulfide level have been shown to occur in the presence of reduced ferredoxin [4,5,15-19] or in some cases reduced pyridine nucleotide [16,19,20].

If the reduction of  $SO_4^{2-}$  which leads to  $H_2S$  proceeded via free  $SO_3^{2-}$ , and an appreciable pool of free  $HSO_3^{-}/SO_3^{2-}$  developed, injury to the leaf tissue would have been expected because of the toxicity of  $HSO_3^{-}/SO_3^{2-}$ . In another study being reported elsewhere [9], we have observed that leaves are injured by L-cysteine which was desulfhydrated in leaf tissue, and  $H_2S$  was emitted as a result. As the desulfhydration proceeded, a pool of  $HSO_3^{-}/SO_3^{2-}$  developed in the tissue. The rate of  $H_2S$  emission accompanying desulfhydration of L-cysteine was comparable to the rate of  $H_2S$  emission accompanying sulfate reduction. Therefore, the lack of injury associated with sulfate-dependent  $H_2S$  emission is evidence against the participation of free  $SO_3^{2-}$  in the pathway.

In the dark, while H<sub>2</sub>S emission from leaf discs in response to 25 mM SO<sub>4</sub><sup>2</sup> was at a negligible level, SO<sub>4</sub><sup>2</sup> was nevertheless assimilated into organic S compounds, at a rate equal to about one-quarter of the absolute assimilation rate in the light. This corresponds to about one-half the assimilation rate in the light if correction is made for the 50% lower rate of sulfate uptake in the dark. Cyanazine (0.1 mM) inhibited incorporation of 35S from SO<sub>4</sub><sup>2-</sup> into organic S compounds by illuminated leaf discs, but the degree of inhibition was less than the degrees of inhibition of H<sub>2</sub>S emission and CO<sub>2</sub> fixation. The substantial rates of SO<sub>4</sub><sup>2</sup> assimilation in darkness or when photosynthetic electron transport is inhibited could have two different explanations. Firstly, there may be two assimilation pathways, one light-dependent and the other light-independent. The former reduction system, coupled to photosynthetic electron transport, would be responsible for H<sub>2</sub>S emission when unusually high levels of SO<sub>4</sub><sup>2-</sup> are taken up. In the light-independent system, reduction would be driven by an alternative reducing source, such as must occur in roots [21, 22] and it would not be responsible for  $H_2S$  emission in response to  $SO_4^{2-}$  and light.

The second possibility is that there is one reduction system and over-production by it of sulfide (free or bound form) results in H<sub>2</sub>S emission. This reduction system would mostly have to utilize a light-dependent reducing source, but it also must be

capable of using an alternative reducing source which is available in darkness. With such a system,  $SO_4^{2-}$  would be reduced and incorporated into cysteine in the dark, and there would be little excess reduced sulfur to emit as  $H_2S$ . Sulfide would be over-produced at high rates only in the light when the supply of sulfate and reductant exceeded the capacity for cysteine synthesis.

Emission of H<sub>2</sub>S in response to SO<sub>4</sub><sup>2</sup> was greatly stimulated by DTE in light or darkness compared to the emission in response to SO<sub>4</sub><sup>2</sup> alone. However, assimilation of SO<sub>4</sub><sup>2-</sup> into organic S compounds was inhibited by DTE. DTE has been reported to stimulate the formation of acid-labile SO<sub>3</sub><sup>2-</sup> (probably DTE-SO<sub>3</sub> [23, 24], the reduction of carrier-SO<sub>3</sub> [15] and free sulfite formation [25, 26]. Thus it is conceivable that DTE might act in leaf tissue by stimulating the formation of either carrier-sulfide, or of free sulfide through free SO<sub>3</sub><sup>2</sup>. However, DTE inhibited the incorporation of SO<sub>4</sub><sup>2</sup> into organic S compounds, which is inconsistent with stimulation of reduction of carrier-SO<sub>3</sub>. Therefore, it seems more likely that in the presence of DTE, sulfide and hence H<sub>2</sub>S is formed via free SO<sub>3</sub><sup>2-</sup>, by sulfite reductase, rather than via the carrier-bound sulfur pathway. The reduction of free sulfite to sulfide would have to be capable of being driven by reductant generated in light or dark. This hypothesis is supported by the observation that H<sub>2</sub>S emission in response to SO<sub>2</sub> during dark periods occurs at rates which are a higher percentage of the light-dependent H<sub>2</sub>S emission rates, than are H<sub>2</sub>S emission rates in response to SO<sub>4</sub><sup>2-</sup> in darkness compared to those in light. The fits with the idea that sulfate is reduced via carrier-bound intermediates, but SO<sub>2</sub>/HSO<sub>3</sub>/SO<sub>3</sub><sup>2-</sup> is reduced via free SO<sub>3</sub><sup>2-</sup>; and that DTE acts by diverting SO<sub>3</sub><sup>2</sup> from the bound to the free sulfur pathway. If the resultant of reduction, free sulfide, is less suitable as a precursor of cysteine than is carrier-bound sulfide, this would account for the fact that it is released as H<sub>2</sub>S rather than incorporated into cysteine.

## **EXPERIMENTAL**

Plant materials. Cucumber plants (Cucumis sativus L. cv Chipper) were grown for 30-40 days in a growth chamber [9]. Young cucumber leaves which were the second or third leaves from the top and actively growing were used for the experiments.

Replicate leaf tissue samples. A major difficulty in earlier work on H<sub>2</sub>S emission in our laboratory was the large variation in emission rates among supposedly comparable leaves from physically equivalent positions on plants grown side by side from seed [7]. This variation made it virtually impossible to obtain whole leaf replicates which could serve as control leaf and treated leaf, in experiments designed to detect subtle differences in behavior. We have found, however, that replicate samples of leaf discs punched from a single leaf, usually one set of discs from each half-leaf, give virtually identical responses to agents which cause H<sub>2</sub>S emission or modulate that emission. Therefore, we now use leaf discs instead of whole leaves. We found in a study of the difference between young and mature leaves, in their resistance to injury by SO<sub>2</sub>, that young leaves were much more active emitters of H<sub>2</sub>S than were mature leaves [27]. This also holds true for H<sub>2</sub>S emission in response to SO<sub>4</sub><sup>2</sup> (H. Rennenberg, unpublished observations).

Continuous measurements of volatile sulfur emission. Leaf discs (2.65 cm<sup>2</sup> diameter) were punched from young 2178 J. Sekiya et al.

leaves with a cork borer and floated on 10 ml of 25 mM K<sub>2</sub>SO<sub>4</sub> (pH 6) with or without additions in Petri dishes in matched Plexigas leaf disc chambers. The temp, of the chamber was controlled with water at constant temp. usually circulating at 25 ml/min. The leaf disc chambers were coupled to a sulfur analyser (Monitor Labs model 8450) through an automatic channel selector and volatile sulfur emission was monitored [9]. A phosphor-coated metal halide lamp (400 W) provided illumination (8 mW/cm<sup>2</sup>, unless noted). To measure CO<sub>2</sub> concn a CO<sub>2</sub> analyser (Beckman, model 865), which is a non-destructive device, was connected between the automatic channel selector and the sulfur analyser, which is destructive. It should be noted that the flow cell of the CO<sub>2</sub> analyser, which is gold plated and is supposed to be inert, initially absorbed appreciable amounts of H<sub>2</sub>S when it was present in the flowing air in the 10000-500000 ppm range of concn. It was therefore necessary to saturate the CO<sub>2</sub> analyser's adsorption capacity before it would be used in-line preceding the sulfur analyser without affecting the measure concn of volatile sulfur. The CO<sub>2</sub> analyser was operated as an absolute concn analyser, with N<sub>2</sub> in the reference cell. The analyser was calibrated with dilutions in N<sub>2</sub> of a 349 ppm primary CO<sub>2</sub> standard (Matheson Co.). The dilutions were made at a constant pressure drop across a proportioner which was achieved by means of a compensatory variable resistance downstream from the proportioner. This made it possible to obtain true additivity of the volume flows measured by the proportioner.

GC analysis. Samples (2 ml) containing volatile sulfur were injected into a gas chromatograph (Varian 3700) equipped with a 6 ft × 1/8 in. Teflon column packed with Chromosil 330 (Supelco) and flame photometric detector for sulfur [27]. The Supelco column temp. was 40°, and the carrier was N<sub>2</sub> at 15 ml/min. Retention times in min for standard components were 0.75 (H<sub>2</sub>S), 1.55 (MeSH), 2.45 (SO<sub>2</sub>) and 3.0 (MeSMe) under the standard conditions [25].

 $SO_4^{2-}$ -uptake and assimilation of  $SO_4^{2-}$  into organic S compounds. Young leaf discs (0.6 cm²/disc) were treated for 2 hr in light or dark with 25 mM  $K_2SO_4$  containing 15  $\mu$ Ci  $Na_2^{35}SO_4$  (sp. act. ca. 400  $\mu$ Ci/mmol) and additions. Leaf discs were washed twice with 100 ml  $H_2O$  after the treatment and subjected to extraction and fractionation into EtOH-soluble, TCA-soluble and residual fractions [9]. The  $^{35}S$  in each fraction was determined by liquid scintillation counting. The EtOH-soluble and TCA-soluble fractions were subjected to TLC [9] and  $^{35}S$  in cysteine, methionine and glutathione was determined.  $SO_4^{2-}$  uptake was calculated from the  $^{35}S$  in the three extract fractions and the sp. act. of  $^{35}SO_4^{2-}$  initially placed in the treatment soln.

Acknowledgements—This work was supported by the U.S. Department of Energy under contract DE-AC02-ERO-1338. H. R. was the recipient of a Deutsche Forschungsgemeinschaft Fellowship. Cyanazine was a gift from Shell Development Co.

#### REFERENCES

- Schmidt, A. (1979) in Encyclopedia of Plant Physiology New Series (Gibbs, M. and Latzko, E., eds.) Vol. 6, p. 481. Springer Berlin.
- Anderson, J. W. (1980) in The Biochemistry of Plants (Miflin, B. J., ed.) Vol. 5, p. 203. Academic Press, New York.
- 3. Asahi, T. (1964) Biochim. Biophys. Acta 82, 58.
- Trebst, A. and Schmidt, A. (1969) in Progress in Photosynthesis Research (Metzner, H., ed.) Vol. III, p. 1510. Lichtenstein, Munchen.
- Schmidt, A. and Trebst, (1969) Biochim. Biophys. Acta 180, 529.
- Spaleny, J. (1977) Plant Soil 48, 557.
- Wilson, L. G., Bressan, R. A. and Filner, P. (1978) Plant Physiol. 61, 184.
- Harrington, N. M. and Smith, I. K. (1980) Plant Physiol. 65, 151.
- 9. Sekiya, J., Schmidt, A., Wilson, L. G. and Filner, P. Plant Physiol. (in press).
- Miller, J. M. and Conn, E. E. (1980) Plant Physiol. 65, 1199.
- Schmidt, A., Wilson, L., Sekiya, J. and Filner, P. (1980) Plant Physiol. 65, S-74.
- 12. Gustafsson, L. (1960) Talanta 4, 227.
- 13. Pfister, K., Radosevich, S. R. and Arntzen, C. J. (1979) Plant Physiol. 64, 995.
- 14. Willenbrink, J. (1964) Z. Naturforsch. Teil B 19, 356.
- 15. Schmidt, A (1973) Arch. Mikrobiol. 93, 29.
- Abrams, W. R. and Shiff, J. A. (1973) Arch. Mikrobiol.
  94. 1
- Tamura, G. and Itoh, S. (1974) Agric. Biol. Chem. 38, 225
- 18. Hennies, H. H. (1975) Z. Naturforsch. Teil C 30, 359.
- Ng, B. H. and Anderson, J. W. (1979) Phytochemistry 18, 573.
- Schwenn, J. D., Depka, B. and Hennies, H. H. (1976)
  Plant Cell Physiol. 17, 165.
- 21. Ellis, R. J. (1963) Phytochemistry 2, 129.
- 22. Pate, J. S. (1965) Science 149, 547.
- 23. Schmidt, A. (1972) Arch. Mikrobiol. 84, 77.
- 24. Schmidt, A. (1975) Planta 124, 267.
- Schmidt, A., Abrams, W. R. and Schiff, J. A. (1974) Eur. J. Biochem. 47, 423.
- Tsang, M. L.-S. and Schiff, J. A. (1976) Plant Cell Physiol. 17, 1209.
- Sekiya, J., Wilson, L. G. and Filner, P. Plant Physiol. (in press).